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Abstract

This thesis presents robust attitude control of multirotor unmanned aerial vehicles

(UAVs). The use of multirotor UAVs for autonomous relief and reconnaissance mis-

sions has been widespread in recent years. Since the attitude dynamics of such

multirotor UAVs are inherently unstable, attitude stabilization becomes necessary.

However, the rotational inertia estimates of such UAVs are not always accurate and

may even change during flight depending on the payload being carried. Controllers

like PD, PI and PID are known to be robust to such uncertainties. However, exist-

ing works do not give a systematic way of determining the gains of such controllers

to ensure robust stability in the presence of parametric uncertainties. The present

work primarily focuses on developing a robust control law for the rigid body atti-

tude dynamics of a multirotor and its implementation. The attitude dynamics is

first linearized about the hover condition and a simple double integrator transfer

function is obtained for the roll, pitch, and yaw subsystems. However, these trans-

fer functions come with inverse multiplicative uncertainty due to rough rotational

inertia estimates. A PD controller is implemented with a low-pass filter to stabilize

the vehicle’s attitude. Robustness to variation in parameters is incorporated and

established using the robust stability criterion for SISO systems. Rotor dynam-

ics for different types of multirotors (fixed-pitch and variable-pitch actuation) are

discussed which provide useful insights about the control allocation problem. Using

this knowledge in tandem with the robust attitude control design, lead compensators

for quadrotors with fixed-pitch and variable-pitch propellers as well as a hexarotor

with fixed-pitch propellers are implemented to demonstrate the modular nature of

the design. Numerical simulations and experimental results validate the proposed

control design and control allocation.
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Chapter 1

Introduction

Quadrotors have been at the heart of much of the research on unmanned aerial

vehicles (UAVs) with vertical take-off and landing (VTOL) capabilities. Their me-

chanical simplicity allows assembly and usage in a straightforward fashion. For such

vehicles, actuator performance is the limiting factor and not the control law used [2].

Hence, the nonlinear attitude dynamics can be linearized about the hover condition

and traditional PD controllers are designed for attitude stabilization and tracking.

This also offers robustness to parameter variation and modeling uncertainties.

Various control techniques have been applied successfully on conventional quadrotor

UAVs. Model based control design such as dynamic inversion [3], feedback lin-

earization [4], and backstepping [5, 6] are popular nonlinear techniques to achieve

full quadrotor control. However, there is a need for accurate vehicle modeling in

the aforementioned control laws. Controllers which are robust to model uncertain-

ties use sliding mode techniques [7, 8]. But implementing this on actuators with

dynamics of their own may induce chattering. Linearized models have been derived

in [9] and used to design adaptive control law for fault tolerance. Linear controllers

[10, 11] have been used extensively to stabilize attitude dynamics, but no systematic

analysis to arrive at the gains has been discussed.

In this work, a lead compensator-type design is used for attitude stabilization. A

simple PD controller is not implementable to the absence of poles in such a con-

troller. Hence, a lead compensator-type design is chosen. This also enables us to

place the pole of the controller in such a way that maximum possible bandwidth

1



Chapter 1. Introduction 2

can be obtained while cutting off high frequency noise. The controller structure is

manipulated using the knowledge of attitude and angular rate dynamics so that only

one tuning parameter is required. This parameter or “gain” is tuned in such a way

that the robust stability criterion is always satisfied for a given amount of rotational

inertia uncertainty. To show the effectiveness of the proposed compensator, rough

estimates of the rotational inertia of the rigid body are used. The lead compensator

is implemented on both conventional and variable-pitch multirotor UAVs to show

the simplicity of design and its modularity.

1.1 Conventional vs. Variable-Pitch Multirotors

(a) Fixed-pitch propeller with motor (b) Variable-pitch mechanism

Figure 1.1: Actuation mechanisms in conventional and variable-pitch multiro-
tors.

One of the main aims of this work is to demonstrate its applicability to a wide class of

multirotors. The proposed robust attitude controller can be used with any multirotor

with only a rough estimate of its inertia and knowledge of its rotor dynamics. This

is shown through a systematic control design process which is then applied to both

conventional and variable-pitch quadrotors. In this work, the term multirotor and

quadrotor are used interchangeably. This is due to the fact that quadrotors form

a subset of multirotors and the only differentiating quality between quadrotors and

the remaining elements of this larger set becomes the number of rotors. Multirotors

with more than four rotors are used to obtain larger lifting capability as well as

redundancy in actuation. Fewer than four rotors changes actuator dynamics for the

yaw subsystem. However, the same control design methodology can be used in all

the above cases. This is verified by implementing the proposed control law on a

hexarotor UAV.
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(a) Conventional quadrotor

(b) Conventional hexarotor

Figure 1.2: Conventional quadrotor and hexarotor used for experimental vali-
dation of the proposed control design methodology.
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The amount of lift produced by a rotor is controlled by either changing the angular

speed of the rotor or the collective blade pitch angle. Conventional multirotors use

the former while variable-pitch, as the name suggests, uses the latter form of actu-

ation. The actuation mechanism for both cases is shown in Fig. 1.1. The problem

with fixed-pitch, variable-speed actuation is that its response is limited by the rota-

tional inertia of the motor used. While this type of actuation works satisfactorily for

small-scale UAVs, it becomes a serious constraint on the vehicle’s overall size and

lifting capacity. A comparison between fixed and variable-pitch thrust actuation has

been carried out by Cutler et al. [12]. Variable-pitch propellers have faster thrust ac-

tuation and can be powered by a single power plant. This implies larger quadrotors

with gasoline engines can be fashioned with higher endurance and payload carrying

capacity [13]. However, this type of quadrotor introduces new challenges. One such

problem is instability caused by vibrations and high frequency noise. Uncertainty

in parameters also causes various problems during control design and implementa-

tion. The proposed attitude controller is shown to be robust to such disturbances

and uncertainties through rigorous numerical simulations and experiments on both

conventional and variable-pitch multirotors. The vehicles used for experiments are

shown in Fig. 1.2 and 1.3.

Figure 1.3: Variable-pitch quadrotor used for experiments.
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Literature on control for variable-pitch quadrotors is limited and robustness analysis

has seldom been carried out. Nonlinear control using dynamic inversion has been

simulated for a variable-pitch quadrotor in [14]. However, the control methodology

used is very sensitive to modeling inaccuracies. In this work, we consider large

uncertainties in rotational inertia estimates, and design a lead compensator which

satisfies the criterion for robust stability. A low-pass filter is used to reject high

frequency jitters due to derivative action. A control allocation step ensures that

the actual control inputs reach their desired values (generated by controller). The

compensator is validated through extensive simulations and experiments.



Chapter 2

Multirotor Rigid Body Dynamics

This chapter introduces the rigid body dynamics of a multirotor UAV derived using

linear and angular momentum conservation laws. Since this work deals with robust

control for the attitude subsystem, only the angular kinematics and dynamics are

described in detail. Translational dynamics are provided for completeness. A sepa-

rate section on rotor dynamics discusses the two possible types of actuation and the

associated dynamics. This enables us to better understand and derive control alloca-

tion for both types of multirotors, viz.: fixed-pitch (conventional) and variable-pitch

multirotors.

2.1 Rotational Dynamics

In this section, a simple linearized model for the rotational dynamics of a multiro-

tor UAV is presented. The system is linearized about hover condition. For small

deviations from hover, it is assumed that the following approximation holds:

p = φ̇, q = θ̇, r = ψ̇, (2.1)

6



Chapter 2. Multirotor Rigid Body Dynamics 7

Figure 2.1: Variable-pitch quadrotor. FI indicates the inertial earth-fixed frame
of reference and Fb indicates the body-fixed frame.

The full dynamic model is given by

φ̈ = Iyy−Izz
Ixx

θ̇ψ̇ + L
Ixx
, (2.2a)

θ̈ = Izz−Ixx
Iyy

φ̇ψ̇ + M
Iyy
, (2.2b)

ψ̈ = Ixx−Iyy
Izz

φ̇θ̇ + N
Izz
, (2.2c)

where φ (roll), θ (pitch), and ψ (yaw) are Euler angles, Ixx, Iyy, and Izz are the

diagonal terms in the inertia matrix, and L, M , and N are moment inputs in the

body-fixed frame. Neglecting higher order terms and linearizing the rotational dy-

namics in (2.2), we get

φ̈ =
L

Ixx
; θ̈ =

M

Iyy
; ψ̈ =

N

Izz
. (2.3)
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Figure 2.2: Nominal plant transfer function for roll dynamics.

Linearization about hover dynamics leads to decoupling of roll, pitch, and yaw dy-

namics. These decoupled dynamics can be used to create transfer function models

in the Laplace domain for individual subsystems. The subsystem for roll dynamics

is shown in Fig. 2.2. Similar subsystems can be created for pitch and yaw dynamics.

Since the inertia parameters Ixx, Iyy, and Izz may not be known exactly, we aim at

designing a robust PD controller for the rotational dynamics. Next, we describe the

translational dynamics for the vehicle.

2.2 Translational Dynamics

The translational dynamics of a multirotor UAV can be derived using Newton’s laws

of motion [5, 15]. This is given by
ẍ

ÿ

z̈

 =


0

0

g

− T

m


cosφ sin θ cosψ + sinφ sinψ

cosφ sin θ sinψ − sinφ cosψ

cosφ cos θ

 , (2.4)

where (x, y, z) is the position in the earth-fixed frame of reference, T is the total

thrust provided by the rotors, m is the mass of the quadrotor, and g is the accelera-

tion due to gravity. The acceleration term T
m

is defined in the body-fixed frame and

is transformed into the earth-fixed frame through the Euler angle sequence 3-2-1

(ψ-θ-φ) [16]. The error in estimation of mass of the vehicle is negligible compared to

inertia parameter estimates. Hence, robustness analysis for translational dynamics

is skipped in this work.
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2.3 Rotor Dynamics

The moments and thrust required to control the rotational and translational dy-

namics of a multirotor are generated by varying the thrust and torque produced by

individual rotors. The thrust and torque generated by the ith rotor are given by

Ti = CTiρπR
2
iV

2
i tip

Qi = RiCQiρπR
2
iV

2
i tip,

(2.5)

where CT is the thrust coefficient, CQ is the torque coefficient, ρ is the density of air,

R is the rotor radius, Vtip = ΩR, and Ω is angular speed of the rotor. From (2.5),

we observe that the thrust and torque produced by the ith rotor can be controlled

by varying either the rotor angular speed or the thrust/torque coefficient.

2.3.1 Conventional Multirotors

In conventional multirotor UAVs, the thrust and torque produced by each rotor is

controlled by varying the angular speed of the rotor while keeping the remaining

variables on the right hand side of (2.5) constant. Hence, (2.5) can be rewritten as

Ti = kfΩ
2
i

Qi = kmΩ2
i

(2.6)

where kf is the force coefficient and km is the moment coefficient of the rotor. Note

that the coefficients CT and CQ are non-dimensional quantities whereas kf and km

are not.

2.3.2 Variable-pitch Quadrotor

Unlike a conventional multirotor, the thrust produced by each rotor of a variable-

pitch quadrotor is varied by changing collective pitch of the rotor blades. The

relationship between collective pitch angle (θ0), thrust coefficient (CT ), and torque
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coefficient (CQ) is given by

θ0 =
6CT
σClα

+
3

2

√
CT
2
, (2.7)

CQ =
1

2
σ

(√
2C

3
2
T

σ
+
Cd0
4

)
, (2.8)

where σ = Nbc
πR

is the solidity ratio, c is the chord length of the blade, Nb is the

number of blades, Clα is the airfoil lift curve slope, and Cd0 is the zero lift drag

coefficient of the airfoil. Note that the thrust coefficient is always positive and only

the positive root is considered for computation of collective pitch angle and torque

coefficient. The thrust and torque produced by the ith rotor can be expressed as

Ti = KCTi

Qi = KRCQi ,
(2.9)

where K = ρπR2V 2
tip. K is typically a constant since Ω is regulated about a constant

value. Detailed derivation of (2.7), (2.8), and (2.9) can be found in [17]. The thrust

and torque coefficients can be used as virtual control inputs and design control

allocation for the variable-pitch quadrotor utilizing these coefficients [14]. This is

given in detail in the next section.

2.4 Control Allocation

From (2.6) and (2.9), we observe that control allocation for conventional multirotors

and variable-pitch quadrotors has to be carried out separately. Even though control

allocation for both types of vehicles is well documented in literature, it is presented

here for completeness.
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2.4.1 Conventional Multirotors

Control allocation for conventional multirotors is simple, straightforward, and hence

well documented [15, 18]. In this work, control allocation for quadrotors and hexaro-

tors are given for two different configurations each. This allows us to employ the

robust attitude control design for multiple types of multirotor UAVs.

The control inputs T , L, M , and N (in the body-fixed frame) are allocated to the

rotors using (2.6). For a quadrotor in X-configuration (see Fig. 2.3(a)), the control

signals are generated by

T = kf (Ω
2
1 + Ω2

2 + Ω2
3 + Ω2

4)

L = d kf (−Ω2
1 + Ω2

2 + Ω2
3 − Ω2

4)

M = d kf (Ω
2
1 − Ω2

2 + Ω2
3 − Ω2

4)

N = km(Ω2
1 + Ω2

2 − Ω2
3 − Ω2

4)

(2.10)

where d is the distance between the rotor axis and the vehicle’s center of gravity.

To obtain the rotor speeds from the T , L, M , and N generated by the position and

attitude controllers, the 4×4 matrix formed using (2.10) can be inverted since all

its entries are positive real numbers and is invertible. For greater clarity, (2.10) is

written in vector form as follows:
T

L

M

N

 =


kf kf kf kf

−d kf d kf d kf −d kf
d kf −d kf d kf −d kf
km km −km −km




Ω2
1

Ω2
2

Ω2
3

Ω2
4

 (2.11)

However, inverting the 4×4 matrix in (2.11) becomes challenging due to numerical

constraints. Such numerical constraints arise since values of kf and km are of the

order 10−5 or smaller. To simplify the process of obtaining rotor speeds without

inverting matrices (it becomes non-square in the case of hexa- and octa-rotors), an



Chapter 2. Multirotor Rigid Body Dynamics 12

allocation matrix is created as follows:
Ω2

1

Ω2
2

Ω2
3

Ω2
4

 =
1

4


1/kf −1/(d kf ) 1/(d kf ) 1/km

1/kf 1/(d kf ) −1/(d kf ) 1/km

1/kf 1/(d kf ) 1/(d kf ) −1/km

1/kf −1/(d kf ) −1/(d kf ) −1/km



T

L

M

N

 (2.12)

This eliminates the need for matrix inversion to obtain rotor speeds. Similarly, the

control signals for a quadrotor in +-configuration are generated by

T = kf (Ω
2
1 + Ω2

2 + Ω2
3 + Ω2

4)

L = d kf (−Ω2
1 + Ω2

2)

M = d kf (Ω
2
3 − Ω2

4)

N = km(Ω2
1 + Ω2

2 − Ω2
3 − Ω2

4)

(2.13)

and the rotor speed allocation is obtained by
Ω2

1

Ω2
2

Ω2
3

Ω2
4

 =
1

4


1/kf −1/(d kf ) 0 1/km

1/kf 1/(d kf ) 0 1/km

1/kf 0 1/(d kf ) −1/km

1/kf 0 −1/(d kf ) −1/km



T

L

M

N

 (2.14)

(a) quad x

(b) quad +

Figure 2.3: Conventional quadrotor airframes with body-fixed frames indicated
[1]. The zb-axes can be defined using the right hand rule.
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This idea of control allocation for conventional multirotors can be extended to any

other air frame [1] whose thrust and torque are varied using (2.6). To demonstrate

this, we use the example of hexarotor in both X- and +-configurations (Fig. 2.4).

The control inputs are generated for a hexarotor in X-configuration as follows:

T = kf (Ω
2
1 + Ω2

2 + Ω2
3 + Ω2

4 + Ω2
5 + Ω2

6)

L = d kf (−Ω2
1 + Ω2

2 + Ω2
3 − Ω2

4 − Ω2
5 + Ω2

6)

M = d kf (Ω
2
3 − Ω2

4 + Ω2
5 − Ω2

6)

N = km(−Ω2
1 + Ω2

2 − Ω2
3 + Ω2

4 + Ω2
5 − Ω2

6)

(2.15)

Using the idea in (2.12) to allocate rotor speeds for hexarotors without matrix in-

version (note that here the matrix is non-square), we get

Ω2
1

Ω2
2

Ω2
3

Ω2
4

Ω2
5

Ω2
6


=

1

6



1/kf −1/(d kf ) 0 −1/km

1/kf 1/(d kf ) 0 1/km

1/kf 1/(d kf ) 1/(d kf ) −1/km

1/kf −1/(d kf ) −1/(d kf ) 1/km

1/kf −1/(d kf ) 1/(d kf ) 1/km

1/kf 1/(d kf ) −1/(d kf ) −1/km




T

L

M

N

 (2.16)

(a) hex x
(b) hex +

Figure 2.4: Hexarotor airframes with body-fixed frames indicated [1]. The zb-
axes can be defined using the right hand rule.
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The control inputs for a hexarotor in +-configuration are generated by

T = kf (Ω
2
1 + Ω2

2 + Ω2
3 + Ω2

4 + Ω2
5 + Ω2

6)

L = d kf (Ω
2
3 − Ω2

4 + Ω2
5 − Ω2

6)

M = d kf (Ω
2
1 − Ω2

2 − Ω2
3 + Ω2

4 + Ω2
5 − Ω2

6)

N = km(−Ω2
1 + Ω2

2 − Ω2
3 + Ω2

4 + Ω2
5 − Ω2

6)

(2.17)

and the rotor speeds can be obtained by

Ω2
1

Ω2
2

Ω2
3

Ω2
4

Ω2
5

Ω2
6


=

1

6



1/kf 0 1/(d kf ) −1/km

1/kf 0 −1/(d kf ) 1/km

1/kf 1/(d kf ) −1/(d kf ) −1/km

1/kf −1/(d kf ) 1/(d kf ) 1/km

1/kf 1/(d kf ) 1/(d kf ) 1/km

1/kf −1/(d kf ) −1/(d kf ) −1/km




T

L

M

N

 (2.18)

2.4.2 Variable-pitch Quadrotor

The control allocation for a variable-pitch quadrotor is different from that of con-

ventional multirotors since it is based on (2.9) rather than (2.5). The control inputs

T , L, M , and N (in the body-fixed frame as shown in Fig. 2.1) for a variable-pitch

quadrotor are given by

T = K (CT1 + CT2 + CT3 + CT4)

L = d K (−CT1 − CT2 + CT3 + CT4)

M = d K (CT1 − CT2 − CT3 + CT4)

N =
KR√

2

(
−|CT1|

3
2 + |CT2|

3
2 − |CT3|

3
2 + |CT4 |

3
2

) (2.19)

For the variable-pitch quadrotor, the control inputs cannot be directly mapped to

the actuators as in the case of conventional multirotors. Moreover, the use of virtual

control and its nonlinearity in the yaw input has to be taken care of by using dynamic

control allocation. This was first proposed in [14]. The basic idea is to use stable

first order dynamics to arrive at the desired rate of change of thrust coefficients.
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Numerical integration then provides the virtual control inputs (CTi ’s). The actual

blade angles are computed using (2.7).

To ensure simple computation of thrust coefficient derivatives via control input

derivatives, stable first-order dynamics are introduced which are given by

Ṫ = k(Td − T ), k > 0. (2.20)

This represents stable first order error dynamics for the error E = T − Td with

Ṫd = 0 which forces Ui to follow Td. Similar first order dynamics can be obtained for

the control inputs L, M , and N . Here, the subscript d denotes the desired control

input that is obtained from the position and attitude control laws. The derivatives

of thrust coefficients are computed using the expression


ĊT1

ĊT2

ĊT3

ĊT4

 =


γ K γ K γ K γ K

−γ dK −γ dK γ dK γ dK

γ dK −γ dK −γ dK γ dK

−3KR
2

(
|CT1 |
2

) 1
2 3KR

2

(
|CT2 |
2

) 1
2 −3KR

2

(
|CT3 |
2

) 1
2 3KR

2

(
|CT4 |
2

) 1
2



−1
Ṫ

L̇

Ṁ

Ṅ


(2.21)

The blade pitch angles computed from thrust coefficients are converted to pulse-

width modulated (PWM) signals for the servos. The servos act as the actuators for

changing the collective blade pitch angles.

The gain k in (2.20) have to be chosen such that the control allocation loop evolves at

a rate that is 5-10 times higher than both altitude and attitude closed-loop systems.

This means that the steady state values of the collective pitch angles have to be

reached well before any change in the desired control input occurs.



Chapter 3

Robust Attitude Control Design

Application of PD, PID, and LQ controllers to stabilize quadrotors has been well

established [2, 11]. However, a systematic approach to deduce the controller gains

such that it satisfies robustness bounds in the presence of parameter uncertainties

and model approximations does not exist. In this section, a robust lead compensator

design is presented in detail to stabilize roll dynamics of a variable-pitch quadrotor

in the presence of parameter uncertainty. A separate section on control synthesis

discusses compensator design for both roll and yaw subsystems for conventional

quadrotors, conventional hexarotors and variable-pitch quadrotors.

3.1 Robust Controller for Roll Dynamics

The nominal model for roll dynamics is given by

G0(s) =
1

Ixx s2
. (3.1)

The set of plants with inverse multiplicative uncertainty can be represented as [19]

G(s) = (1 + r ∆(s))−1G0(s), (3.2)

where r = Imaxxx −Iminxx

Imaxxx +Iminxx
and perturbations ∆(s) are assumed to be real which satisfy

the condition |∆(jω)| ≤ 1, ∀ω. This is illustrated in Fig. 3.1. The terms Imaxxx and

16



Chapter 3. Robust Attitude Control Design 17

Figure 3.1: Roll dynamics with inverse multiplicative uncertainty.

Iminxx are defined as

Imaxxx = Ixx + γIxx; Iminxx = Ixx − γIxx, (3.3)

where 0 ≤ γ <1. Hence, this implies that the controller should be robust to almost

100% variation in parameter estimates. The PD controller in time domain is given

by

L = Kp(φd − φ) +Kd
d

dt
(φd − φ), (3.4)

where φd is the desired roll angle, Kp, Kd are positive controller gains, and L is the

moment input for roll subsystem. From (3.2) and (3.4), we get

GC(s) = (1 + r∆)−1
Kds+Kp

Ixx s2
. (3.5)

However, the PD controller given in (3.4) cannot be implemented in real time as

this is a non-causal system. This is also seen by its Laplace transform. A low-pass

filter is thus added such that the resulting lead compensator-type transfer function

has maximum PM and rejects high frequency oscillations. The modified controller

C(s) is given by

C(s) =
Kp(0.25s+ 1)

τds+ 1
. (3.6)

We know that a high value of Kd increases the bandwidth of the system but induces

unstable oscillations at the same time. Moreover, it is known that angular velocity

evolves 5-10 times faster than the attitude states. Thus, the value of Kd is chosen

such that Kd ≈ Kp
5

.

Placing the pole of the lead compensator one decade to the right of the zero is
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common practice in loop-shaping-based design to obtain a good amount of PM.

Choosing τd in (3.6) using this rule-of-thumb results in a controller with decent

amount of phase margin (≈ 55◦) for the system given in Table 3.3. The resulting

controller is given by

C(s) =
Kp(0.25s+ 1)

0.025s+ 1
. (3.7)

and the resulting Bode plot with Kp = 0.35 is given in Fig. 3.2.

Figure 3.2: Bode diagram for G0C(s) with the initial control design in (3.7)
with Kp = 0.35

However, the value of τd can be reduced further to achieve higher PM and lower

settling times without allowing high frequency noise to degrade controller perfor-

mance. Knowing the frequency at which the controlled states are estimated plays

an important role in deciding the final value of τd. This is because the value of τd

should only be reduced in a way that it sufficiently attenuates high frequency noise

coming in through estimation. In other words, the asymptote with -40 dB/decade

slope towards the higher frequency region in Fig. 3.2 should start well before the

frequency at which states are being estimated. Since the state estimation frequency

is known to be 250 Hz for the autopilot used in this work, τd is chosen to be 0.002.
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Figure 3.3: Bode diagram for G0C(s) with the modified control design in (3.8)
with Kp = 0.35

Now the open loop transfer function G0C(s) is fixed, except for the gain Kp. The

new C(s) is given by

C(s) =
Kp(0.25s+ 1)

0.002s+ 1
. (3.8)

For the example considered in Fig. 3.2, the modified Bode plot is shown in Fig. 3.3.

Increasing the value of Kp to further increase the PM in Fig. 3.3 induces instability

to the closed-loop system due to high PD gains. Note that a PM of 71.1◦ is already

high and close to its maximum value (≈ 78.6◦). This large amount of PM ensures

very good tracking and low overshoot. In the coming sections, robust stability

analysis of the developed controller and control synthesis for different multirotors

are presented. This shows that the proposed compensator can be synthesized quickly

with minimal gain tuning and is robust to parameter uncertainties.
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3.1.1 Robust Stability Analysis

Lemma 3.1. For an open loop gain with inverse multiplicative uncertainty given by

GC(s) = (1 + r ∆(s))−1G0C(s),

the robust stability criterion is given by

|r S(jω)| < 1, ∀ω,

where |∆(jω)| ≤ 1, ∀ω, and S(jω) = 1
1+G0C(jω)

is the sensitivity function.

Proof. The proof is similar to the generalized uncertainty case discussed in Chapter 7

of [19]. Assume that the nominal open loop systemG0C(s) is stable. Robust stability

is ensured if GC(jω) does not encircle the -1+j0 point. This can be represented

using norms as

|1 +GC(jω)|>0, ∀GC(jω), ∀ω

⇒ |1 + (1 + r ∆(jω))−1G0C(jω)|>0,∀|∆(jω)| ≤ 1,∀ω

⇒ |1 + r ∆(jω) +G0C(jω)|>0, ∀|∆(jω)| ≤ 1, ∀ω.

(3.9)

For the worst case in |∆(jω)| where |∆(jω)|=1 and when |1 + G0C(jω)| and r are

treated as vectors with an angle of 180◦ between them, the condition in (3.9) reduces

to
|1 +G0C(jω)| − |r| > 0, ∀ω

⇒ |r S(jω)| < 1, ∀ω.
(3.10)

In the next section, controller synthesis is presented for conventional multirotors as

well as a variable-pitch quadrotor.
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3.2 Control Synthesis

Control synthesis for a conventional quadrotor in X-configuration, a conventional

hexarotor in +-configuration, and a variable-pitch quadrotor is presented in this

section. Parameters of the aforementioned vehicles which are used for both simula-

tions and experimental validation are given in Tables 3.1 - 3.3.

3.2.1 Conventional Quadrotor

From Table 3.1, we observe that the rotational inertia about the body-fixed xb-

and yb-axes are identical. Hence, control synthesis for only the roll subsystem is

presented here. The same controller is used to control the pitch subsystem and is

validated using experiments.

Parameter (units) Value

Mass, m 1.8 kg

Radius of rotor blades, R 0.15 m

Force coefficient, kf 2.6193× 10−5 N/(rad/s)

Moment coefficient, km 4.4779−7 N m/(rad/s)

Distance between rotor axis and cg, d 0.30 m

Number of blades per rotor, Nb 2

Moment of inertia about xb, Ixx 0.002 kg m2

Moment of inertia about yb, Iyy 0.002 kg m2

Moment of inertia about zb, Izz 0.005 kg m2

Table 3.1: Parameters for the conventional quadrotor.

First, a simple lead compensator for the roll subsystem is designed with its zero and

pole separated by a decade. This is shown in Fig. 3.4. This provides a good PM

of 54.4◦ but fails to meet the robust stability criterion in (3.10) for r = 0.9 with

Kp = 0.2. This is shown in Fig. 3.5 where satisfying the robust stability criterion

becomes difficult with increasing uncertainty while maintaining a decade distance

between zero and pole of the compensator.
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Figure 3.4: Bode plot for roll subsystem G0C(s) with Kp = 0.2 for the quadrotor
parameters given in Table 3.1
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Figure 3.5: |rS| plot for roll subsystem for the quadrotor parameters given in
Table 3.1 with Kp = 0.2. The robust stability criterion is violated when the

uncertainty is 90%, which is undesirable.

To achieve better tracking performance with higher PM as well as ensuring that

robust stability criterion is satisfied for large uncertainties, τd is chosen as 0.002.

Note that τd cannot be chosen arbitrarily small. This is to ensure that the effect
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of high frequency noise on the controller performance is minimal. The modified

compensator design is shown in Fig. 3.6 and robust stability criterion for both 70%

and 90% uncertainty is verified in Fig. 3.7.

Figure 3.6: Modified bode plot for roll subsystem G0C(s) for the quadrotor
parameters given in Table 3.1

10 -1 10 0 10 1 10 2 10 3
-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

M
a
g
n
itu

d
e
 (

d
B

)

|rS| for r=0.7, G_0C with K_d = 0.2K_p,
_d = 0.002

|rS| for r=0.9, G_0C with K_d = 0.2K_p,
_d = 0.002

Bode Diagram

Frequency  (rad/s)

Figure 3.7: |rS| plot for roll subsystem for the quadrotor parameters given in
Table 3.1. The robust stability criterion is satisfied for both cases of uncertainty.
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Control synthesis for the yaw subsystem is presented next for the conventional

quadrotor considered in Table 3.1. The open loop Bode plot for G0C is shown

in Fig. 3.8 for both values of τd. Here, G0(s) = 1
Izzs2

.

Figure 3.8: Bode plot for yaw subsystem for the quadrotor parameters given in
Table 3.1
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Figure 3.9: |rS| plot for yaw subsystem for the quadrotor parameters given in
Table 3.1. Robust stability criterion is satisfied for r = 0.7 for both values of τd.
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K_d = 0.2K_p, _d = 0.02.
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Figure 3.10: |rS| plot for yaw subsystem for the quadrotor parameters given
in Table 3.1. Robust stability criterion is satisfied for r = 0.9 and τd = 0.002

whereas it fails for r = 0.9 and τd = 0.02.

Robust stability criterion is verified for the yaw subsystem in Fig. 3.9 and 3.10 for

different uncertainties. It can be observed that choosing a smaller τd is beneficial

for ensuring robustness to high levels of parametric uncertainty.

3.2.2 Conventional Hexarotor

Parameter (units) Value

Mass, m 2.0 kg

Radius of rotor blades, R 0.127 m

Force coefficient, kf 1.3934× 10−5 N/(rad/s)

Moment coefficient, km 2.1965−7 N m/(rad/s)

Distance between rotor axis and cg, d 0.28 m

Number of blades per rotor, Nb 2

Moment of inertia about xb, Ixx 0.003 kg m2

Moment of inertia about yb, Iyy 0.003 kg m2

Moment of inertia about zb, Izz 0.006 kg m2

Table 3.2: Parameters for the conventional hexarotor.
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Control synthesis for a conventional hexarotor is presented in this section. The

parameters for this vehicle are given in Table 3.2. The steps followed for con-

trol synthesis for roll and yaw subsystems are similar to those for the conventional

quadrotor. The bode plot for the roll subsystem with Kp = 0.25 is shown in Fig.

3.11. A phase margin of 54.9◦ is obtained with τd = 0.02 and a PM of 71.4◦ is

achieved with τd = 0.002. Robust stability criterion is verified for different values of

τd as well as r for the roll subsystem in Fig. 3.12.

The bode plot for the yaw subsystem (G0 = 1
Izzs2

) is shown in Fig. 3.13 with

Kp = 0.45 and for two different values of τd. A phase margin of 54.9◦ is obtained

with τd = 0.02 and a PM of 70.6◦ is achieved with τd = 0.002. Robust stability

criterion is verified through Fig. 3.14 for the yaw subsystem of the hexarotor.

Figure 3.11: Bode plot based design for roll subsystem for the hexarotor pa-
rameters given in Table 3.2
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Figure 3.12: |rS| plot for roll subsystem for the hexarotor parameters given in
Table 3.2.

Figure 3.13: Bode plot based design for yaw subsystem for the hexarotor pa-
rameters given in Table 3.2
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Figure 3.14: |rS| plot for yaw subsystem for the hexarotor parameters given in
Table 3.2.

3.2.3 Variable-pitch Quadrotor

Parameter (units) Value

Mass, m 1.2 kg

Radius of rotor blades, R 0.145 m

Chord length of blades, c 0.030 m

Distance between rotor axis and cg, d 0.3 m

Slope of airfoil lift curve, Clα 5.73 rad−1

Number of blades per rotor, Nb 2

Rotational speed, Ω 3000 rpm

Moment of inertia about xb, Ixx 0.007 kg m2

Moment of inertia about yb, Iyy 0.007 kg m2

Moment of inertia about zb, Izz 0.033 kg m2

Table 3.3: Parameters for the variable-pitch quadrotor.
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Figure 3.15: |rS| plot for roll subsystem for the quadrotor parameters given in
Table 3.3.

Compensator synthesis for the variable-pitch quadrotor with parameters in Table 3.3

was discussed in previous sections using Fig. 3.2 and 3.3. This compensator is used

to control the roll and pitch subsystems and is validated experimentally. Robust

stability criterion is verified for different values of τd and r. This is shown in Fig.

3.15. Next, control synthesis for the yaw subsystem is presented.

Figure 3.16: Bode plot based design for yaw subsystem for the quadrotor pa-
rameters given in Table 3.3
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Figure 3.17: |rS| plot for yaw subsystem for the quadrotor parameters given in
Table 3.3.

From Fig. 3.16 and 3.17, we obtain the compensator for the yaw subsystem (G0 =
1

Izzs2
) of the variable-pitch quadrotor with parameters given in Table 3.3. Simulation

and experimental validation of the proposed compensator design is presented in the

next chapter.



Chapter 4

Results

This chapter presents numerical simulations and experiments for a conventional

quadrotor in X-configuration, a conventional hexarotor in +-configuration, and a

variable-pitch quadrotor. This validates the proposed methodology and shows ro-

bustness to parameter changes.

4.1 Simulation Results

In this section, numerical simulations to demonstrate the tracking performance of

the designed compensator is presented. The simulation environment utilized for this

purpose is MATLAB. The 6-DoF model is numerically simulated using the Runge-

Kutta method. Outputs of the roll, pitch, and yaw subsystem compensators are used

to generate the appropriate actuator signals (rotor speeds for conventional multiro-

tors and blade-pitch angles for variable-pitch quadrotor). Control inputs generated

through (2.10), (2.17), and (2.19) are finally fed to the 6-DoF rigid-body dynamics

simulation to obtain the desired tracking response for a conventional quadrotor, a

conventional hexarotor, and a variable-pitch quadrotor, respectively.

31
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4.1.1 Conventional Quadrotor

Roll tracking response is shown for a conventional quadrotor with parameters given

in Table 3.1. The reference signal is a sinusoid with an amplitude of 20◦. The fre-

quency of the sinusoid is varied near the cross over frequency of the bode magnitude

plot in Fig. 3.6. The compensator is simulated with Kp = 0.2 and τd = 0.002 which is

also implemented on the actual UAV while conducting real-world experiments. The

simulation experiments are also carried out by changing the quadrotor parameters

to show tracking performance in the absence and presence of parametric uncertainty.

The pitch and yaw subsystems are shown to be stabilized at 0◦ since experiments

are able to show their tracking capabilities during actual flight.
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Figure 4.1: Roll angle tracking for a sinusoidal reference signal with amplitude
20◦ and frequency 0.5 Hz. Parameters considered for the rigid-body dynamics

simulations are given in Table 3.1.

First, roll tracking is simulated for a reference signal frequency of 0.5 Hz (lesser than

the gain crossover frequency) in Fig. 4.1. As expected for no parameter variation,

the tracking is very good. The rotor speeds for this simulation experiment are given

in Fig. 4.2.
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Figure 4.2: Rotor speeds obtained using (2.12) for roll tracking in Fig. 4.1.

To show robustness to parameter variation, the same simulation is run with a model

that has 70% variation in Ixx, Iyy, and Izz (r = 0.7).
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Figure 4.3: Roll angle tracking for a sinusoidal reference signal with amplitude
20◦ and frequency 0.5 Hz. Parameters considered for the rigid-body dynamics
simulations are 70% deviated from those given in Table 3.1 which creates an

uncertainty of r = 0.7.
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Figure 4.4: Rotor speeds obtained using (2.12) for roll tracking in Fig. 4.3.

Since the compensator is robust to parametric uncertainties by design, the tracking

performance does not degrade with a 70% change in model parameters. The rotor

speeds for this simulation experiment are given in Fig. 4.4. Comparing the tracking

responses with and without parametric uncertainties, as shown in Fig. 4.1 and 4.3,

respectively, we observe that the vehicle is able to track the reference signal with

very little error. It can also be seen that the phase difference between the reference

and output sinusoids as well as the error amplitude is minimal. This phase difference

and error amplitude keeps increasing with increase in input frequency. This trend

is expected from the Bode plots of G0C(s) and is also observed by comparing the

tracking responses in Fig. 4.1 and 4.5.

Next, tracking a fast changing signal is simulated to show tracking capabilities closer

to the gain crossover frequency (3 Hz in this case). A sinusoid of amplitude 20◦ and

frequency 2 Hz is given as the reference signal. Tracking response is shown in Fig.

4.5. It can be observed that tracking is fairly satisfactory and the closed-loop system

remains stable. Reference signals that vary faster than 2 Hz are seldom found in real-

world flights even during aggressive maneuvers. Hence, the designed compensator

can easily be implemented for good tracking performance.
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Figure 4.5: Roll angle tracking for a sinusoidal reference signal with ampli-
tude 20◦ and frequency 2 Hz. Parameters considered for the rigid-body dynamics

simulations are same as those given in Table 3.1.
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Figure 4.6: Rotor speeds obtained using (2.12) for roll tracking in Fig. 4.5.
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4.1.2 Conventional Hexarotor

Numerical simulations analogous to the conventional quadrotor are carried out in

this section for a conventional hexarotor. Parameters for the hexarotor used for

simulations are given in Table 3.2. Tracking response of the hexarotor for a reference

signal with 20◦ amplitude and 0.5 Hz frequency is shown in Fig. 4.7 without any

uncertainty in the inertia parameters. The corresponding rotor speeds are shown in

Fig. 4.8.
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Figure 4.7: Roll angle tracking for a sinusoidal reference signal with amplitude
20◦ and frequency 0.5 Hz. Parameters considered for the rigid-body dynamics

simulations are given in Table 3.2.

Next, the same reference signal is used with 70% parameter uncertainty and the

tracking response is shown in Fig. 4.9. The corresponding rotor speeds are shown

in Fig. 4.10.
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Figure 4.8: Rotor speeds obtained using (2.18) for roll tracking in Fig. 4.7.
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Figure 4.9: Roll angle tracking for a sinusoidal reference signal with amplitude
20◦ and frequency 0.5 Hz. Parameters considered for the rigid-body dynamics
simulations are 70% deviated from those given in Table 3.2 which creates an

uncertainty of r = 0.7.
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Figure 4.10: Rotor speeds obtained using (2.18) for roll tracking in Fig. 4.9.
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Figure 4.11: Roll angle tracking for a sinusoidal reference signal with ampli-
tude 20◦ and frequency 2 Hz. Parameters considered for the rigid-body dynamics

simulations are given in Table 3.2.
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Figure 4.12: Rotor speeds obtained using (2.18) for roll tracking in Fig. 4.11.

Tracking response with a sinusoidal reference signal with amplitude 20◦ and fre-

quency 2 Hz (close to the gain crossover frequency at 2.75 Hz) is shown in Fig. 4.11.

Phase difference between reference and output signals is slightly higher than that

observed in Fig. 4.6 since the reference signal frequency is closer to the gain crossover

frequency for the hexarotor case. The corresponding rotor speeds are shown in Fig.

4.12.

4.1.3 Variable-pitch Quadrotor

In this section, numerical simulations are carried out to validate the proposed com-

pensator for the variable-pitch quadrotor with parameters given in Table 3.3. The

reference trajectories are identical to those given for the conventional quadrotor in

the previous sections.

A comparison of tracking performance with no parameter variation and with 70%

parameter variation is shown for the variable-pitch quadrotor first. The tracking

responses for the aforementioned cases are shown in Fig. 4.13 and 4.15, respectively.

It can be observed that the compensator performs reasonably well in both cases.

The thrust coefficients that act as virtual controls and the blade pitch angles which

are the final actuators are shown in Fig. 4.14 and 4.16. The values are high since
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the vehicle used is off-the-shelf and is ill-designed. Blade pitch angles are close to

stall and this should be avoided in future designs of the vehicle.
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Figure 4.13: Roll angle tracking for a sinusoidal reference signal with amplitude
20◦ and frequency 0.5 Hz. Parameters considered for the rigid-body dynamics

simulations are identical to those given in Table 3.3.
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(a) Thrust coefficients during roll track-
ing without parameter uncertainty.
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(b) Collective blade pitch angles during
roll tracking without parameter uncer-
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Figure 4.14: Trust coefficients (virtual controls) and collective blade pitch angles
(actuators) for roll tracking in Fig. 4.13.
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Figure 4.15: Roll angle tracking for a sinusoidal reference signal with amplitude
20◦ and frequency 0.5 Hz. Parameters considered for the rigid-body dynamics

simulations are 70% deviated from those given in Table 3.3.
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(a) Thrust coefficients during roll track-
ing with r = 0.7.
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Figure 4.16: Trust coefficients (virtual controls) and collective blade pitch angles
(actuators) for roll tracking in Fig. 4.15.
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Figure 4.17: Roll angle tracking for a sinusoidal reference signal with amplitude
20◦ and frequency 0.5 Hz. Parameters considered for the rigid-body dynamics

simulations are identical to those given in Table 3.3.
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(a) Thrust coefficients during roll track-
ing without parameter uncertainty.
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(b) Collective blade pitch angles during
roll tracking without parameter uncer-

tainty.

Figure 4.18: Trust coefficients (virtual controls) and collective blade pitch angles
(actuators) for roll tracking in Fig. 4.17.

Next, the tracking response of the closed-loop system is shown for a reference signal

of amplitude 20◦ and 2 Hz in Fig. 4.17. Tracking performance of the compensator
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is degraded as compared to the conventional quadrotor and conventional hexarotor

since the reference signal frequency is exactly equal to the gain crossover frequency

of G0C(s) for the variable-pitch quadrotor case. The associated thrust coefficients

and blade pitch angles are shown in Fig. 4.18.

In the next section, experimental results of the proposed roll, pitch, and yaw com-

pensators are shown. This validates the proposed method and its robustness to

uncertain parameter estimates.

4.2 Experimental Results

In order to validate the proposed compensator on actual UAVs, an open source flight

controller is used in this work. Pixhawk autopilot developed by 3D Robotics is a

widely used platform to validate and test UAV control and estimation algorithms.

The autopilot is fixed rigidly onto the multirotor UAVs as shown in Fig. 1.2 and

1.3.

The flight stack (software stack) used is PX4 [20]. The flight stack is open source

software used by developers to ensure stability of an UAV at the lowest level. The

flight stack is unix-like and runs a real-time operating system (RTOS). It uses a

publish-subscribe architecture which makes it easy to use and modular in nature.

The PX4 flight stack by default carries several modules for control, estimation,

navigation, etc. A separate module for the attitude controller is created and built

to validate the compensators proposed in this work. An EKF running onboard the

autopilot provides fairly accurate estimates of the roll, pitch, and yaw angles along

with the body angular rates. Flight results for both the conventional and variable-

pitch quadrotors along with a conventional hexarotor are given in the following

sections.
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4.2.1 Conventional Quadrotor

Figure 4.19: Conventional quadrotor in hover condition.

The lead compensator in (3.8) is implemented on the conventional quadrotor with

Kp identical to that used in the simulations. The tracking response is shown in Fig.

4.20. The reference inputs were given manually through a radio controller which

simplified the testing process. The tracking response is fairly good for both fast and

slow changing reference signals and is able to hover in a stable manner. A screen

grab of the video shows the quadrotor in hover (see Fig. 4.19) and during various

maneuvers (see Fig. 4.21 and 4.22).
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Figure 4.20: Roll, pitch, and yaw tracking using the conventional quadrotor in
Fig. 1.2 (A). The compensator synthesized in Fig. 3.6 is used for the roll and
pitch tracking for this vehicle. The compensator synthesized in Fig. 3.8 is used

for yaw subsystem control.

(a) Quadrotor on the ground. (b) Quadrotor with a negative roll angle.

Figure 4.21: Screen grabs of the conventional quadrotor during test flights.
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(a) Quadrotor with negative pitch angle
(pitch down motion).

(b) Quadrotor with positive pitch angle
(pitch up motion).

Figure 4.22: Screen grabs of the conventional quadrotor performing pitch up
and down maneuvers.

4.2.2 Conventional Hexarotor

Figure 4.23: Conventional hexarotor in hover state.

Experimental validation of the developed lead compensator for the conventional

hexarotor is presented in this section. The same module created for attitude control

of the conventional quadrotor is used. However, actuator allocation is changed for

this case. With the gains for roll and yaw designed in Fig. 3.11 and 3.13, respectively,

the closed-loop response is very stable. The hexarotor can be seen in its hover state

in Fig. 4.23.

The roll, pitch, and yaw tracking performance during one of the experiments is shown

in Fig. 4.24. Highly satisfactory response is observed for all three subsystems.
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Figure 4.24: Roll, pitch, and yaw tracking using the variable-pitch quadrotor
in Fig. 1.2 (B). The compensator synthesized in Fig. 3.11 is used for the roll and
pitch tracking for this vehicle. The compensator synthesized in Fig. 3.13 is used

for yaw subsystem control.

(a) Hexarotor with positive roll angle. (b) Hexarotor on the ground.

Figure 4.25: Screen grabs of the conventional hexarotor during test flights.
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(a) Hexarotor with a positive pitch an-
gle.

(b) Hexarotor with a negative pitch an-
gle.

Figure 4.26: Screen grabs of the conventional hexarotor performing pitching
moment maneuvers.

4.2.3 Variable-pitch Quadrotor

Experimental validation of the developed compensator for a variable-pitch quadrotor

is shown in this section. Similar to the conventional quadrotor experiments, a new

module for attitude control of the novel vehicle is created in the PX4 flight stack.

The EKF provides state feedback. A very stable hover is achieved using the designed

compensator and can seen in Fig. 4.27.

Figure 4.27: Variable-pitch quadrotor in hover state.
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Figure 4.28: Roll, pitch, and yaw tracking using the variable-pitch quadrotor in
Fig. 1.3. The compensator synthesized in Fig. 3.3 is used for the roll and pitch
tracking for this vehicle. The compensator synthesized in Fig. 3.16 is used for

yaw subsystem control.

(a) Quadrotor on the ground.
(b) Quadrotor with a positive pitch an-

gle.

Figure 4.29: Screen grabs of the variable-pitch quadrotor during test flights.
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(a) Quadrotor with negative roll angle. (b) Quadrotor with positive roll angle.

Figure 4.30: Screen grabs of the variable-pitch quadrotor performing negative
and positive roll maneuvers.

The tracking response of the variable-pitch quadrotor can be seen in Fig. 4.28.

This validates the compensator design given in previous sections. Snapshots of the

quadrotor during flights can be seen in Fig. 4.29 and 4.30.



Chapter 5

Concluding Remarks

The emergence of UAVs as a viable substitute for tasks that are difficult or danger-

ous for humans has made it a popular area of research. However, works in existing

literature concentrated on developing the vehicle itself with simple control laws with

heuristic tuning or on developing complex, nonlinear control laws for aggressive ma-

neuvers restricted to a particular type of vehicle. Looking at the wide range of

applications of VTOL UAVs, it would be advantageous to employ a simple general-

ized control law for the innermost dynamics, i.e., the attitude loop. Since rotorcrafts

are in general statically unstable systems, this step cannot be skipped. Once this is

stabilized, higher level guidance and control can be achieved.

The purpose of this thesis is to simplify the attitude dynamics and design robust

compensators to stabilize and track attitude commands. This has been done through

linearization of the attitude dynamics about the hover condition and designing a

lead compensator for stabilization. A high phase margin ensures good tracking and

minimal overshoot. To further simplify controller tuning, the compensator phase

margin for each of the angle subsystems can be tuned using just one parameter.

Moreover, this parameter can be obtained analytically as well as through simple

MATLAB commands, with only a rough estimate of the rotational inertia of the

vehicle. Such a simplistic approach to attitude control allows one to quickly tune

and fly any multirotor UAV.

The proposed method is validated through a comprehensive set of numerical simula-

tions as well as experiments. The compensator designed could be used for multiple

51
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types of rotorcraft UAVs by simply changing the only tuning parameter available.

Tracking performance is shown to be very good and shows that simplified control

design can be deployed for efficient and faster implementations.
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