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Abstract— In this paper, we present an autonomous flight
controller for a quadcopter with thrust vectoring capabilities.
This UAV falls in the category of multirotors with tilt-motion
enabled rotors. Since the vehicle considered is over-actuated
in nature, the dynamics and control allocation have to be
analysed carefully. Moreover, the possibility of hovering at large
attitude maneuvers of this novel vehicle requires singularity-free
attitude control. Hence, quaternion state feedback is utilized
to compute the control commands for the UAV motors while
avoiding the gimbal lock condition experienced by Euler angle
based controllers. The quaternion implementation also reduces
the overall complexity of state estimation due to absence of
trigonometric parameters. The quadcopter dynamic model and
state space is utilized to design the attitude controller and con-
trol allocation for the UAV. The control allocation, in particular,
is derived by linearizing the system about hover condition.
This mathematical method renders the control allocation more
accurate than existing approaches. Lyapunov stability analysis
of the attitude controller is shown to prove global stability.
The quaternion feedback attitude controller is commanded
by an outer position controller loop which generates rotor-
tilt and desired quaternions commands for the system. The
performance of the UAV is evaluated by numerical simulations
for tracking attitude step commands and for following a way-
point navigation mission.

I. Introduction

The design advances in vertical takeoff and landing
(VTOL) UAV research have led to the development of
various types of quadcopter platforms. These design variants
are based on the simple four propeller model to produce
thrust for VTOL but utilize different methodologies for
attitude control and navigation of the quadcopter in three-
dimensional space. These methodologies can be implemented
at flight software level as well as hardware level in the
UAV. The hardware design advances include variable blade
pitch quadcopters, tilt-rotor quadcopters, engine powered
and re-configurable unmanned aerial systems. In a variable
blade pitch quadcopter, motion and orientation control is
achieved by the change in blade pitch angle of different
rotors in various combinations. This UAV platform is capable
of producing reverse thrust and inverted flights [1] [2]. In
a tilt-rotor UAV, the propeller motors are actuated to tilt
about the arm connecting to the main quadcopter body using
servo motors [3]. This UAV can follow tight trajectories
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Fig. 1: Tilt-rotor quadcopter free body diagram [4]

and provide better disturbance rejection towards uncertainties
during flight [4] [5]. This paper focuses on position and
attitude control design for the tilt-rotor UAV using quater-
nion state feedback and accurate control allocation for the
over-actuated system. Dynamic modeling and control design
methods for the various flight modes of tilt-rotor quadcopter
are discussed in [4], [6], [7], [8] and [9]. The work in [10] has
shown that the tilt-rotor quadcopter can achieve large attitude
angles. In recent works, Franchi et al. in [11] have defined a
general class of tilt-rotor UAV with laterally bounded input
force for full-pose tracking. Invernizzi et al. in [12] have
utilized geometric control theory to develop control laws for
tilt-rotor UAV. Similarly, fault-tolerant control in case of a
single propeller or motor failure using tilt-rotor UAV are
discussed in [13][14] [15]. These previous works on tilt-
rotor quadcopter utilize Euler angles and direction cosine
matrices formulation for developing flight controllers. From
dynamics and control perspective, the attitude characteristics
of any rigid body cannot be extracted by integrating the
angular velocities in body frame because the Euler angles
are defined in different frames and are only locally valid. So,
the control engineers rely on integral solution of kinematic
equations which are limited by inherent singularities and
only a limiting solution for attitude can be obtained when
two of the rotational axes coincide [16]. This phenomenon
is termed as gimbal lock where, we can not distinguish
between two degrees of freedom because those rotational
axes coincide with each other [17]. Quaternion feedback
based controller is a viable solution to overcome gimbal lock
limitations as well as the complexity of estimating rotation
matrices. The control applications of quaternion feedback
based controller for multi-rotor UAV platforms are shown in
[2], [18], [19], and [20]. Bhargavapuri et al. in [21] have used
quaternion feedback based attitude controller for tilt-rotor
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quadcopter. The work by Fresk et al. in [17] and [20] for
quaternion feedback based attitude controller for quadcopters
is quite notable. Although, quaternion feedback controllers
are developed in literature for traditional quadcopters, this
work is one of the first attempts to develop quaternion feed-
back based attitude controller for an over-actuated tilt-rotor
UAV. The detailed mathematical model for translational and
rotational dynamics of the tilt-rotor UAV are presented. The
moment equations are linearized using small perturbation
theory or Taylor’s series expansion to derive the necessary
control allocation for the attitude control of the UAV. This
is the first time such a mathematical approach is presented
for derivation of control allocation for tilt-rotor UAVs. It
has been shown that attitude control using quaternions is
actually a regulation problem in terms of error quaternion.
Further, Lyapunov stability analysis for quaternion control
regulatory loop is shown to establish stability of the closed-
loop system. The attitude controller is validated by numerical
simulations and the inner quaternion attitude feedback loop
is commanded by integrating an external position controller
loop for achieving autonomous way-point navigation.

II. DynamicModel

This section provides a brief introduction to quaternions
and the dynamic model including equations governing the
translational and rotational motion of the UAV. A quaternion
is a hypercomplex number in R4, consisting of a scalar part
and a vector part with three elements as shown in (1).

A = A0 + A1i + A2 j + A3k (1)

where, A0 is the scalar part and A1,A2,A3 are the elements
of the vector part (Ā) of the quaternion. Quaternion multi-
plication (A

⊗
B), quaternion conjugate (A∗), and quaternion

normalize (Â) are the main operations used in this work. The
detailed explanation on quaternion operations can be found in
[22]. The expression of quaternion derivative for describing
the vehicle attitude is shown in (2) and (3).

q̇ =
1
2

q
⊗[

0
Ω

]
(2)

q̇0

q̇1

q̇2

q̇3

 =
1
2


0 −p −q −r
p 0 r −q
q −r 0 p
r q −p 0



q0

q1

q2

q3

 (3)

In equation (2), Ω =
[
p q r

]T
represent the vehicle body

rates and the quaternion can be estimated by integrating (2).
The normalize operation is used to convert a quaternion into
unit quaternion as shown in (4).

q̂ =
q0 + q1i + q2 j + q3k√
q0

2 + q1
2 + q2

2 + q3
2

(4)

The conversion from quaternion to Euler angles can be
achieved by using the operation shown in (5).

φ
θ
ψ

 =


atan2[2(q̂0q̂1 + q̂2q̂3), 1 − 2(q̂1

2 + q̂2
2)]

asin[2(q̂0q̂2 − q̂3q̂1)]
atan2[2(q̂0q̂3 + q̂1q̂2), 1 − 2(q̂2

2 + q̂3
2)]

 (5)

The rotating propellers in the quadcopter produce forces and
moments and the tilting motion of rotating propellers helps
in force and moment vectoring as shown in Fig. 1 [4]. The
translational motion dynamics of the tilt-rotor quadcopter are
described by equation (6)

ẍ

ÿ

z̈


= q ⊗



F2 sθ2+F4 sθ4
m

−F1 sθ1−F3 sθ3
m

F1cθ1+F2cθ2+F3cθ3+F4cθ4
m


⊗ q∗ −


0

0

g


(6)

where q is the quaternion that transform the acceleration
vector from body frame to the inertial frame of reference.
The sine and cosine angle terms are shown as s∠ and c∠
respectively. Further, θi, ∀i ∈ {1, 2, 3, 4} are the rotor tilt
angles, m is the total mass of quadcopter, g is the acceleration
due to gravity, ẍ, ÿ and z̈ are the linear accelerations in the
world frame, Fi, ∀i ∈ {1, 2, 3, 4} represent the propeller thrust
forces. The rotational dynamics of the UAV are represented
as effective torque along body axes as shown in (7) and (8)

Ω̇ = I−1 (τ −Ω × I Ω) (7)

τ =



l(F2cθ2 − F4cθ4) + M2sθ2 + M4sθ4

l(F3cθ3 − F1cθ1) + M3sθ3 + M1sθ1

l(−F1sθ1 − F2sθ2 + F3sθ3 + F4sθ4)
−M1cθ1 + M2cθ2 − M3cθ3 + M4cθ4


(8)

where I is the diagonal moment of inertia matrix with
[Ixx, Iyy, Izz] as the diagonal elements. Mi, ∀i ∈ {1, 2, 3, 4}
are the moments produced by the rotor drag. The propeller
thrust force Fi and moment Mi are related to the rotational
angular speed ωi of the ith rotor by (9)

Fi = k fω
2
i , Mi = kmω

2
i , ∀i ∈ {1, 2, 3, 4} (9)

where k f and km are force and moment coefficients, respec-
tively [23]. It should be noted that any variations in propeller
speeds and rotor tilts lead to a resultant torque about body
axes producing angular accelerations. The body rates can
be obtained by integral solution of (7). These rates can be
estimated in an actual system using an inertial measurement
unit (IMU) sensor. Further, the body rates can be utilized to
estimate quaternions using (2).

III. Controller Development

A. Attitude Control

In this section, the attitude controller of tilting rotor quad-
copter is derived using quaternion feedback. The rotational
dynamics of the system are linearized at a hovering state.
At the hovering state, all propellers of the UAV are spinning
at a nominal angular speed (ωh) and the rotors are tilted
by (θh) angle. The roll, pitch and yaw angles are all zero
in the hovering state. This condition is related to a unit
quaternion, thus the vehicle attitude can be represented by
[1 0 0 0]T quaternion. This assumption simplifies
quaternion kinematics equation (3). The quaternion rate and



Fig. 2: Attitude control architecture

acceleration directly relate to body rates and accelerations
of the system respectively and the control input torques will
affect the quaternion vector elements as shown in (10).

q̇0

q̇1

q̇2

q̇3

 =
1
2


0
p
q
r

 ;


q̈0

q̈1

q̈2

q̈3

 =
1
2


0
ṗ
q̇
ṙ

 (10)

We can solve (7) analytically using Taylor’s series expansion.
The rate multiplication Coriolis terms are very small and we
ignore them to simplify the rotational dynamics [16].

I


ṗ

q̇

ṙ


=



l(F2cθ2 − F4cθ4) + M2sθ2 + M4sθ4

l(F3cθ3 − F1cθ1) + M3sθ3 + M1sθ1

l(−F1sθ1 − F2sθ2 + F3sθ3 + F4sθ4)
−M1cθ1 + M2cθ2 − M3cθ3 + M4cθ4


(11)

The solution for angular motion about xb axis is presented
here and it can be generalized about yb and zb axes. Equation
for angular motion about xb axis is shown in (12) using the
force and moment values from equation (9).

Ixx ṗ = lk fω
2
2cθ2 − lk fω

2
4cθ4 + kmω

2
2sθ2 + kmω

2
4sθ4 (12)

Taylor’s series expansion about the hover linearization point:

Ixx δṗ = 2lk fω2δω2cθ2 − lk fω
2
2sθ2δθ2 − 2lk fω4δω4cθ4

+lk fω
2
4sθ4δθ4 + 2kmω2δω2sθ2 + kmω

2
2cθ2δθ2

+2kmω4δω4sθ4 + kmω
2
4cθ4δθ4

Based on the assumption for linearization about hover con-
dition ω2 = ω4 = ωh and θ2 = θ4 = θh.

Ixx δ ṗ = 2lk fωhδω2cθh − lk fω
2
hsθhδθ2 − 2lk fωhδω4cθh

+lk fω
2
hsθhδθ4 + 2kmωhδω2sθh + kmω

2
hcθhδθ2

+2kmωhδω4sθh + kmω
2
hcθhδθ4

The tilt-rotor quadcopter achieves hover condition at zero tilt
angle and acts like a conventional quadcopter. Thus, θh −→ 0.

Ixx δ ṗ = 2lk fωh(δω2 − δω4) + kmω
2
h(δθ2 + δθ4)

δ ṗ =
2lk fωh(δω2 − δω4)

Ixx
+

kmω
2
h(δθ2 + δθ4)

Ixx
(13)

This expression yields the change in roll rate when the rotor
speeds and rotor tilts are exercised simultaneously. It should

be noted that the expression in (13) relates to the control of
first vector element of the quaternion attitude. The change
in angular speed of propellers (δω2 − δω4 = ∆ωφ) and rotor
tilts (δθ2 + δθ4 = ∆θφ) provides the necessary control action
for attitude change and it can be represented in state space
form as shown in (14).[

δ ṗ
δq̇1

]
=

[
0 0
1 0

] [
δp
δq1

]
+

 lk fωh

Ixx

kmω
2
h

2Ixx

0 0

 [∆ωφ∆θφ

]
(14)

Similar expressions can be obtained about yb and zb axes.
They can be easily accommodated in existing state space as
shown from (15) to (18)

δq̇ =
lk fωh(δω3 − δω1)

Iyy
+

kmω
2
h(δθ3 + δθ1)

2Iyy
(15)[

δq̇
δq̇2

]
=

[
0 0
1 0

] [
δq
δq2

]
+

 lk fωh

Iyy

kmω
2
h

2Iyy

0 0

 [∆ωθ∆θθ

]
(16)

δṙ =
kmωh∆ωψ

Izz
+

lk fω
2
h∆θψ

2Izz
(17)[

δṙ
δq̇3

]
=

[
0 0
1 0

] [
δr
δq3

]
+

 kmωh
Izz

lk fω
2
h

2Izz

0 0

 [∆ωψ∆θψ

]
(18)

where change in rotors’ angular speed for yaw control
∆ωψ = −δω1 + δω2 − δω3 + δω4 and change in rotors’
tilt angle for yaw control ∆θψ = −δθ1 − δθ2 + δθ3 + δθ4.
The quaternion operations in the controller are performed in
normalized form. The desired quaternion q̂des and conjugate
of the normalized quaternion q̂ are used to compute the error
quaternion q̂err as shown in (19).

q̂err = q̂des
⊗

q̂∗ (19)

The error quaternion changes based on the required rotation
for achieving the desired attitude. As, the UAV attains the de-
sired attitude, the error quaternion becomes unit quaternion.
It should be noted that the desired error quaternion q̂des

err is
always a unit quaternion. Thus, the attitude control using
quaternion feedback actually becomes a regulation problem
in terms of quaternion error where the controller objective
is to make the elements of the vector part of the error
quaternion equal to zero. The change in propeller speeds
and rotor tilt for achieving a desired orientation are shown
in (20) and (21), which are similar to expressions presented
in [17]. Fig. 2 shows the schematic of the attitude controller,
here the outer loop generates commands for the inner loop.

∆ωφ
∆ωθ
∆ωψ

 = −kq


q̂1

err

q̂2
err

q̂3
err

 − kω


p
q
r

 (20)


∆θφ
∆θθ
∆θψ

 = −k
′

q


q̂1

err

q̂2
err

q̂3
err

 − k
′

ω


p
q
r

 (21)

Here, kq, kω, k
′

q, k
′

ω;∀ ∈ R3x3 are diagonal positive definite
gain matrices.



B. Lyapunov stability analysis

We use a similar Lyapunov function discussed in [24] to
analyze the stability of the tilt-rotor UAV attitude controller.

Lemma 1: For the error dynamics given by

˙̂qerr =
1
2

q̂err

⊗[
0

Ωerr

]
(22)

Ω̇err = Ω̇ − Ω̇des + Ω ×Ωdes (23)

where Ωerr = Ω − Ωdes, Ωdes is the desired angular velocity
vector defined in the desired frame of reference and the
vector elements for error quaternion q̂err are described by
ε = [q̂1

err, q̂2
err, q̂3

err]T . The control law in (24) is globally
stabilizing and reduces to expression similar to (20), (21) for
stabilization to a desired attitude, i.e. Ωdes −→ 0 as ε −→ 0.

τ
(
∆ωi,∆θi

)
= −kQε − kΩΩerr + IΩ̇des (24)

− I
(
Ω ×Ωdes

)
+ Ω × IΩ ∀i ∈ {φ, θ, ψ}

Proof: Consider the Lyapunov function candidate

V = kQ(q̂err − q̂des
err )T (q̂err − q̂des

err ) +
1
2

ΩT
errIΩerr

The time derivative of the Lyapunov candidate is computed
and substituting for ˙̂qerr, Ω̇err and Ω̇ from (22), (23) and (7).

V̇ = 2kQ(q̂err − q̂des
err )T ( ˙̂qerr − ˙̂qdes

err ) + ΩerrIΩ̇err

V̇ = kQΩT
err[ f (q̂err)]T (q̂err − q̂des

err )

+ ΩT
err

(
IΩ̇ − IΩ̇des + I

(
Ω ×Ωdes

))
where the definition of [ f (q̂err)] is identical to that explained
in [24], [ f (q̂err)]T q̂err = 0 and [ f (q̂err)]T q̂des

err = ε. The vector
part of error quaternion is given by ε = [q̂1

err, q̂2
err, q̂3

err]T .

V̇ = kQΩT
errε + ΩT

err

(
−Ω × IΩ + τ − IΩ̇des + I(Ω ×Ωdes)

)
Substituting (24) in the Lyapunov time derivative equation,
we obtain the following result after simplification

V̇ = −kΩΩT
errΩerr ≤ 0

where kQ, kΩ;∀ ∈ R3x3 are diagonal positive definite gain
matrices. The control torque τ is a function of variation in
propeller angular speeds and tilt angles as shown in (14),
(16), (18). The Lyapunov function here considers Ωerr, but
the final implementation reduces to the expressions shown
in (20), (21) upon simplification. Here, Ωdes = −kQε, and
Ωdes −→ 0 as ε −→ 0. The Lyapunov candidate is unbounded,
the stability properties hold globally. It is straightforward to
show asymptotic stability using invariance principles.

C. Position Control

Here, the position controller of the UAV is developed
which generates quaternion commands for the inner attitude
controller. The tilting motion of rotors causes acceleration
along xy-axes. Hence the longitudinal and lateral motion
of the system can also be controlled using rotor tilts. The
position errors (ex, ey, ez), velocity errors (ėx, ėy, ėz) and error
integrals are utilized by the outer PID controller loop as

shown in (25) to compute rotor-tilt commands ∆θi;∀i ∈ {x, y}
and desired accelerations commands r̈i

des;∀i ∈ {x, y, z}.

r̈x
des = kpx ex + kix

∫
exdt + kdx ėx

r̈y
des = kpy ey + kiy

∫
eydt + kdy ėy (25)

r̈z
des = kpz ez + kiz

∫
ezdt + kdz ėz + g

∆θx = kpθx
ex + kiθx

∫
exdt + kdθx

ėx

∆θy = kpθy ey + kiθy

∫
eydt + kdθy ėy

Here, kpi , kii , and kdi ∀i ∈ {x, y, z}, kpθi , kiθi , and kdθi ∀i ∈ {x, y}
are the proportional, integral and derivative gains for the
position controller. The angular speed required for individual
propeller motors necessary for hovering and motion along the
z−axis is given by (26).

ωh =

√
mr̈z

des

k f (cθ1 + cθ2 + cθ3 + cθ4)
(26)

The body accelerations are represented by abi ∀i ∈ {x, y, z}
for the system. The objective is to determine the quater-
nion which will align the body acceleration vector ab =

[abx aby abz ]
T along the desired inertial acceleration vector

r̈des = [r̈x
des r̈y

des r̈z
des]T from (25). This is achieved

by normalizing the two vectors as âb = norm[ab] , âi =

norm[r̈des] and computing the required rotation Θ and axis
of rotation n̂. The cosine, sine of the rotation angles and the
axis of rotation can be calculated with vector multiplication
operations [25]. The resulting quaternion is denoted by q̃.

q̃ =
1√

2(1 + âb
T âi)


1 + âb

T âi

âb × âi

 (27)

The commanded orientation q̃ can be corrected for desired
yaw angle as discussed in [2] which yields qdes. The desired
quaternion is further normalized to q̂des for commanding the
attitude controller loop. The control allocation matrix for the
entire system is shown in (28). The attitude control elements
are derived from the state space formulation discussed earliar.
The rotor speeds are represented by ωi = ωh + ∆ω j, ∀i ∈
{1, 2, 3, 4}, j ∈ {φ, θ, ψ}. Similarly, the rotor tilt angles are
given as θi = θh + ∆θ j, ∀i ∈ {1, 2, 3, 4}, j ∈ {φ, θ, ψ, x, y}.

∆ω1
∆ω2
∆ω3
∆ω4
∆θ1
∆θ2
∆θ3
∆θ4


=



0 −1 −1 0 0 0 0 0
1 0 1 0 0 0 0 0
0 1 −1 0 0 0 0 0
−1 0 1 0 0 0 0 0
0 0 0 0 1 −1 0 −1
0 0 0 1 0 −1 1 0
0 0 0 0 1 1 0 −1
0 0 0 1 0 1 1 0





∆ωφ
∆ωθ
∆ωψ
∆θφ
∆θθ
∆θψ
∆θx

∆θy


(28)

IV. Numerical Simulations and Results

Here, the proposed controller is validated by numerical
simulations. The mathematical model of the UAV and con-
troller are developed in MATLAB and Simulink R2017a.



Fig. 3: Variation in Euler angles

Fig. 4: Variation in quaternion elements

The parameters used in the simulations are m = 1.56kg, l =

0.12m, k f = 2.2e − 4Ns/rad, km = 5.4e − 6Ns/rad, Ixx =

Iyy = 0.0449kgm2, Izz = 0.0899kgm2. The first simulation
considers application of step input to the roll, pitch and yaw
axes of the UAV. The roll command of 1rad is issued at
t = 5s. Similarly, the pitch command is issued at t = 15s
and yaw command is issued at t = 25s. Figure 3 and 5 show
the variation of Euler angles and body rates w. r. t. step
inputs. It can be seen in Fig. 4 that the second element of
quaternion changes when roll step input is commanded to
the UAV. Similarly, third and fourth element of quaternion
respond to pitch and yaw step inputs respectively. Further,
we validate the flight controller by simulating a way point
navigation mission. The UAV is initialized at the origin
and commanded to visit a predefined set of way points
at a height of 5m. The set of way points are [5, 5],
[5, 10], [10, 10], [15, 20], [20, 20]. The position controller
generates necessary rotor-tilt and desired quaternion com-
mands to minimize the position error. The three dimensional
trajectory followed by the UAV is shown in figure 7. The
UAV visits all way-points by maintaining the desired height.
The tilt-rotor UAV has redundancy in control of position
and orientation because the position control is achieved by
changing the UAV orientation as well as rotor-tilt angles.
Figure 8 shows the variation of angular speeds of the UAV
propellers. Similarly, figure 10 shows the variation of rotor-
tilt angles. The error-quaternion elements are shown in figure
9. The error-quaternion elements change while the UAV is
navigating between way-points and they converge to the unit
quaternion as the UAV reaches goal position.

Fig. 5: Body rates about xbybzb-axes

Fig. 6: Variation in rotor tilt angles

Fig. 7: Trajectory for WPN

Fig. 8: Variation of rotor speeds during WPN



Fig. 9: Quaternion error elements during WPN

Fig. 10: Variation in rotor-tilt angles during WPN

V. Conclusion

In this paper, position and attitude controller for the tilt-
rotor quadcopter with quaternion feedback was presented.
The UAV dynamics for translational and rotational motion
were shown. Taylor series expansion about the hover con-
dition was used to derive the necessary control allocation
for the system. Lyapunov stability analysis of the attitude
controller was presented. The performance of the quaternion
feedback attitude controller was shown for reference attitude
tracking. The inner quaternion feedback loop was com-
manded using an external position controller for a way-point
mission. The complete control allocation and simulations
were presented for achieving way-point navigation. Future
work will involve experimental validation of the proposed
flight controller and more studies will be conducted to
exploit the redundant control inputs for achieving fault-
tolerant control during flight.
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